Устройства плавного пуска электродвигателя: функции, виды и стоимость решений

Устройства плавного пуска электродвигателя: функции, виды и стоимость решений

Недостатки электродвигателя, такие как высокий пусковой ток и большая нагрузка на механические узлы приводимого в действие оборудования, часто возникают при запуске. Решением этих проблем является применение устройств плавного пуска (УПП). В данной статье мы расскажем о том, как выбрать УПП и какие задачи оно может решить.

В современном мире скорости, производительности и эффективности, электродвигатели имеют множество различных типов — от внутреннего сгорания до ядерных и пневматических. Но, выбор промышленности пал на асинхронные двигатели переменного тока, благодаря их простоте в конструкции, стабильности работы, высокой эффективности и бесшумности. Однако, традиционные асинхронные двигатели имеют недостатки в момент запуска. Высокий пусковый ток создает сильную нагрузку на питающую сеть, что может привести к снижению качества энергии и возникновению проблем в работе оборудования, подключенного к сети. Кроме того, резкий рывок при запуске сокращает срок службы механических узлов приводимого в действие оборудования.

Решением проблем являются устройства плавного пуска, которые позволяют избежать высокого пускового тока и снижения нагрузки на механические узлы оборудования. Устройства плавного пуска подходят для всех видов электродвигателей асинхронного типа. Выбор конкретного устройства плавного пуска зависит от ряда факторов, включая мощность и тип двигателя, требования к производительности и экологической безопасности. Устройства плавного пуска могут сократить расходы на энергию и увеличить срок службы механических узлов оборудования, что делает их необходимыми для бесперебойной работы промышленности.

Устройство плавного пуска (УПП) – это специальное устройство, которое предназначено для решения проблем, связанных с пуском электродвигателей. Как правило, основным недостатком пуска напрямую от сети является скачкообразная подача напряжения питания на двигатель. Обмотка статора двигателя имеет малое омическое сопротивление, а рабочее индуктивное сопротивление устанавливается только в момент выхода двигателя в «режим». В промежуток времени с момента включения в сеть до выхода двигателя в «режим» сопротивление очень мало и сила тока сильно возрастает. В результате получаем высокий пусковой ток, который достигает 6-8 или даже 10-12 кратного увеличения номинального тока потребления.

Для решения проблемы необходимо ограничить пусковые токи и осуществить плавный разгон двигателя до номинальных режимов. Использование УПП позволяет снизить нагрузки на механические узлы и значительно увеличить срок службы оборудования. Кроме того, УПП способен устранять рывки в механической части электропривода в момент запуска электродвигателей, а также гидравлические удары в трубопроводах и задвижках в момент пуска и остановки насосов.

Поэтому использование УПП является рациональным решением для предотвращения поломок и повышения надежности работы оборудования.

Устройство плавного пуска асинхронного электродвигателя основано на использовании тиристоров - полупроводниковых приборов, которые могут проводить ток после получения управляющего напряжения и "закрываться" при прохождении значения тока через ноль. Тиристоры соединяются по встречной схеме для каждой из фаз трехфазной системы. При необходимости регулирования напряжения на силовых клеммах электродвигателя, управляющее напряжение подается на электроды тиристоров, благодаря чему возможно регулирование механических нагрузок в электроприводе. Кроме того, данный тип электродвигателя можно плавно останавливать, что особенно актуально при использовании низкоинерционных нагрузок.

Однако такие устройства имеют существенные недостатки: способность справляться только с низкими нагрузками или запускать двигатель в холостую; риск перегрева двигателя, а также возможность выхода из строя полупроводниковых элементов при увеличении времени запуска; снижение напряжения ведет к снижению крутящего момента на валу.

Существуют более совершенные устройства, которые не имеют таких недостатков. Они делятся на амплитудные и частотные, которые отличаются основным принципом действия и стоимостью. Частотные устройства более сложны в установке и наладке, но их использование целесообразно в условиях, когда необходимо изменять скорость вращения электродвигателя.

Варианты УПП

Существует два основных типа устройств плавного пуска (УПП):

1. Регуляторы напряжения без функции обратной связи.

2. Регуляторы напряжения с функцией обратной связи.

Обратимся к каждому типу подробнее.

УПП без функции обратной связи - наиболее распространенный тип. Здесь регулировка может быть выполнена по двум или трем фазам, но только в соответствии с предустановленной программой, указанной пользователем, которая содержит информацию о времени запуска и начальном напряжении. Данный тип устройств позволяет уменьшить пусковой ток и момент, а также обеспечивает возможность плавной остановки, но не способен регулировать момент в зависимости от нагрузки на двигатель.

УПП с функцией обратной связи - это улучшенный вариант предыдущей группы. Он контролирует фазовый сдвиг между напряжением и током в обмотках статора и использует полученные данные для регулировки напряжения на клеммах двигателя таким образом, чтобы запуск произошел гарантированно с наименьшим пусковым током и достаточным механическим крутящим моментом. Также полученные данные используются для защиты от перегрузки, дисбаланса фаз и т.д.

Продвижение не стоит на месте. Существуют УПП, которые имеют цепи отслеживания и могут контролировать нагрузку в каждый конкретный момент времени. Они считаются наиболее подходящими для приводов с тяжелыми и очень тяжелыми пусковыми режимами, для которых рекомендуется использовать преобразователи частоты. Кроме того, такие УПП могут эффективно снизить энергопотребление.

Использование устройств для плавного пуска

Устройства для плавного пуска могут использоваться везде, где применяются электродвигатели. Однако для выбора таких устройств важно учитывать нагрузку на двигатель и частоту запусков.

Если нагрузка на двигатель невелика, а его запуск происходит редко, то подойдут регуляторы без обратной связи или вообще регуляторы пускового момента. Это может быть актуально для шлифовальных станков, некоторых вентиляторов, роторных дробилок и вакуумных насосов.

Однако если высокая нагрузка сочетается с частым и инерционным запуском, то стоит выбирать регуляторы напряжения с обратной связью, возможно, с запасом по номиналу. Такие устройства могут быть целесообразны при использовании ленточной пилы, центрифуги, сепаратора, распылителя, лебедки, вертикального конвейера.

Дополнительно можно упомянуть, что в Европе запрещено запускать электродвигатели мощностью 15 кВт и выше без устройств для плавного пуска в соответствии с законодательством.

Цены на софтстартеры и их нестабильность в последние годы являются неотъемлемыми компонентами рынка. По словам экспертов, подобное явление вызвано высокой стоимостью импортных товаров, в том числе и продукции многих отечественных компаний, производящихся за рубежом или изоляционных материалов, выпускаемых в России на основе импортных комплектующих. Из-за нестабильности валют наблюдаются колебания цен на софтстартеры.

Уровень стоимости софтстартеров напрямую зависит от их характеристик. Некоторые модели, начиная от 7 тысяч рублей, могут иметь заданный номинальный ток. Но более мощные модели, стоимость которых может достигать 700 тысяч рублей, позволяют равномерно распределить ток до 1200 А.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *